This study examines the static performances of a graphene platelet (GPL)-reinforced ethylene tetrafluoroethylene (ETFE) composite membrane under wind loadings. The wind pressure distribution on a periodic tensile membrane unit was analyzed by using CFD simulations, which considered various wind velocities and directions. A one-way fluid–structure interaction (FSI) analysis incorporating geometric nonlinearity was performed in ANSYS to evaluate the static performances of the composite membrane. The novelty of this research lies in the integration of graphene platelets (GPLs) into ETFE membranes to enhance their static performance under wind loading and the combination of micromechanical modelling for obtaining material properties of the composites and finite element simulation for examining structural behaviors, which is not commonly explored in the existing literature. The elastic properties required for the structural analysis were determined using effective medium theory (EMT), while Poisson’s ratio and mass density were evaluated using rule of mixtures. Parametric studies were carried out to explore the effects of a number of influencing factors, including pre-strain, attributes of wind, and GPL reinforcement. It is demonstrated that higher initial strain effectively reduced deformation under wind loads at the cost of increased stress level. The deformation and stress significantly increased with the increase in wind velocity. The deflection and stress level vary with the wind direction, and the maximum values were observed when the wind comes at 15° and 45°, respectively. Introducing GPLs with a larger surface area into membrane material has proven to be an effective way to control membrane deformation, though it also results in a higher stress level, indicating a trade-off between deformation management and stress management.
Read full abstract