Abstract Central Pacific (CP) El Niño (i.e., CP El Niño) events have occurred more frequently during recent decades. Wind stress patterns are argued to have significant effects on the generation and evolution of CP El Niño. However, the winds differ in different CP El Niño events, making it hard in previous studies to avoid overgeneralizing the timing and location of the winds that indeed matter. In this study, the theoretically favorable wind perturbations (FWPs) that may warm the Niño-4 region, in terms of their directions, horizontal structures, and bounds, in each month before the peak month (December) of CP El Niños are determined, using an adjoint sensitivity method. The mechanisms of the FWPs are interpreted. Primarily, zonal temperature advection via the equatorial wave–associated velocity anomalies is responsible. In particular, easterly FWPs over the central equatorial Pacific with off-equatorial westerly FWPs (constituting a wind structure with a strong north–south gradient) during the first half year can play a positive role in warming the Niño-4 region and so can the westerly FWPs over the western tropical Pacific, while westerly FWPs in the western-central tropical Pacific in the second half year show higher efficiency. Meanwhile, the particular wind structure of the first half year (i.e., the easterly anomaly over the central equatorial Pacific with strong wind stress curl off the equator) has also been verified to be able to produce a CP-type warming in an intermediate coupled model (ICM); similar wind stress anomalies had been observed in some CP El Niño events. Thus, the FWPs provide helpful guidance in analyzing the generation and evolving processes of the wind-driven CP El Niño.