The complete classification of homogeneous three spaces is well known for some time. Of special interest are those with rigidity four which appear as Riemannian submersions with geodesic fibres over surfaces with constant curvature. Consequently their geometries are completely encoded in two values, the constant curvature, c, of the base space and the so called bundle curvature, r. In this paper, we obtain the complete classification of equivariant Willmore surfaces in homogeneous three spaces with rigidity four. All these surfaces appear by lifting elastic curves of the base space. Once more, the qualitative behaviour of these surfaces is encoded in the above mentioned parameters (c,r). The case where the fibres are compact is obtained as a special case of a more general result that works, via the principle of symmetric criticality, for bundle-like conformal structures in circle bundles. However, if the fibres are not compact, a different approach is necessary. We compute the differential equation satisfied by the equivariant Willmore surfaces in conformal homogeneous spaces with rigidity of order four and then we reduce directly the symmetry to obtain the Euler Lagrange equation of 4r2-elasticae in surfaces with constant curvature, c. We also work out the solving natural equations and the closed curve problem for elasticae in surfaces with constant curvature. It allows us to give explicit parametrizations of Willmore surfaces and Willmore tori in those conformal homogeneous 3-spaces.