Targeted regulation using transgrafting technology has become a trend. However, the mechanisms of transgene-derived signal communication between rootstocks and scions remain unclear in woody plants. Here, we grafted wild-type (WT) walnut (Juglans regia L.) on WT (WT/WT), JrGA20ox1 (encodes a gibberellin 20-oxidase)-overexpressing (WT/OE), and JrGA20ox1-RNAi transformation (WT/RNAi) walnut in vitro. We aimed to elucidate the mechanisms of JrGA20ox1-derived signal communication under PEG-simulated drought stress between rootstocks and scions in walnut. We demonstrated that JrGA20ox1-OE and JrGA20ox1-RNAi rootstocks could transport active gibberellins (GAs) and JrGA20ox1-RNAi vector-produced sRNAs to WT scions under PEG-simulated drought stress, respectively. The movement of sRNAs further led to a successive decline in JrGA20ox1 expression and active GA content. Meanwhile, unknown mobile signals may move between rootstocks and scions. These mobile signals reduced the expression of a series of GA-responsive and GA-non-responsive genes, and induced ROS production in guard cells and an increase in ABA content, which may contribute to the drought tolerance of WT/RNAi, while the opposite occurred in WT/OE. The findings suggest that JrGA20ox1-derived rootstock-to-scion movement of signals is involved in drought tolerance of scions. Our research will provide a feasible approach for studying signal communication in woody plants.
Read full abstract