This paper examines the possibility of controlling the outcome of measured (flat space-time) relativistic effects, such as time dilation or length contractions, using pure rotations and their nontrivial interactions with Lorentz boosts in the isometry group SO+(3,1). In particular, boost contributions may annihilate leaving only a geometric phase (Wigner rotation), which we see in the complex solutions of the generalized Euler decomposition problem in R3. We consider numerical examples involving specific matrix factorizations, along with possible applications in special relativity, electrodynamics and quantum scattering. For clearer interpretation and simplified calculations we use a convenient projective biquaternion parametrization which emphasizes the geometric phases and for a large class of problems allows for closed-form solutions in terms of only rational functions.
Read full abstract