Characterization, dismantling and pre-disposal management of irradiated graphite (i-graphite) have an important role in safe decommissioning of several nuclear facilities which used this material as moderator and reflector. In addition to common radiation protection issues, easily volatizing long-lived radionuclides and stored Wigner energy could be released during imprudent retrieval and processing of i-graphite. With this regard, among all cutting technologies, abrasive waterjet (AWJ) can successfully achieve all of the thermo-mechanical and radiation protection objectives. In this work, factorial experiments were designed and systematically conducted to characterize the AWJ processing parameters and the machining capability. Moreover, the limitation of dust production and secondary waste generation has been addressed since they are important aspects for radiation protection and radioactive waste management.The promising results obtained on non-irradiated nuclear graphite blocks demonstrate the applicability of AWJ as a valid technology for optimizing the retrieval, storage, and disposal of such radioactive waste. These activities would benefit from the points of view of safety, management, and costs.