As human spaceflight increases in duration, cultivation of crops in spaceflight is crucial to protecting human health under microgravity and elevated oxidative stress. Foodborne pathogens (e.g., Salmonella enterica) carried by leafy green vegetables are a significant cause of human disease. Our previous work showed that Salmonella enterica serovar Typhimurium suppresses defensive closure of foliar stomata in lettuce (Lactuca sativa L.) to ingress interior tissues of leaves. While there are no reported occurrences of foodborne disease in spaceflight to date, known foodborne pathogens persist aboard the International Space Station and space-grown lettuce has been colonized by a diverse microbiome including bacterial genera known to contain human pathogens. Interactions between leafy green vegetables and human bacterial pathogens under microgravity conditions present in spaceflight are unknown. Additionally, stomatal dynamics under microgravity conditions need further elucidation. Here, we employ a slow-rotating 2-D clinostat to simulate microgravity upon in-vitro lettuce plants following a foliar inoculation with S. enterica Typhimurium and use confocal microscopy to measure stomatal width in fixed leaf tissue. Our results reveal significant differences in average stomatal aperture width between an unrotated vertical control, plants rotated at 2 revolutions per minute (2 RPM), and 4 RPM, with and without the presence of S. typhimurium. Interestingly, we found stomatal aperture width in the presence of S. typhimurium to be increased under rotation as compared to unrotated inoculated plants. Using confocal Z-stacking, we observed greater average depth of stomatal ingression by S. typhimurium in lettuce under rotation at 4 RPM compared to unrotated and inoculated plants, along with greater in planta populations of S. typhimurium in lettuce rotated at 4 RPM using serial dilution plating of homogenized surface sterilized leaves. Given these findings, we tested the ability of the plant growth-promoting rhizobacteria (PGPR) Bacillus subtilis strain UD1022 to transiently restrict stomatal apertures of lettuce both alone and co-inoculated with S. typhimurium under rotated and unrotated conditions as a means of potentially reducing stomatal ingression by S. typhimurium under simulated microgravity. Surprisingly, rotation at 4 RPM strongly inhibited the ability of UD1022 alone to restrict stomatal apertures and attenuated its efficacy as a biocontrol following co-inoculation with S. typhimurium. Our results highlight potential spaceflight food safety issues unique to production of crops in microgravity conditions and suggest microgravity may dramatically reduce the ability of PGPRs to restrict stomatal apertures.
Read full abstract