Today, the number of solutions for automated processes in agriculture is growing rapidly. This is primarily driven by the lack of available and affordable labour, pricing pressures, and regulatory requirements. Vegetable production in particular has a lot of potential for automation, as many process steps, such as planting, are performed partly manually. Fully automated systems for the planting process are characterized by their big size, which is only suitable for large farms. At the same time, these planters typically have a low level of intelligence, which is essential for a fully autonomous planting process performed by autonomous vehicles or robots. The following work therefore deals with the development and construction of a prototype for vegetable planting via a robotic platform. This prototype is designed to meet the requirements of a conventional planter and carry out the planting process automatically using a robotic platform. To ensure a robust robotic planting process, an AI-based control system has been integrated that can detect and adjust the planting quality. For this reason, the planting unit was designed to allow dynamic changes in working depth and furrow width. By dynamically controlling these planting parameters, there is potential for a more sustainable planting process with lower energy requirements. A number of evaluations have been carried out to validate the described characteristics of the prototype planting unit.
Read full abstract