The lack of effective and non-corrosive hole-transporting layer (HTL) materials has remained a long-standing issue that severely restricts the performance of organic solar cells (OSCs). Most pH-neutral conjugated polyelectrolytes (CPEs) exhibit inferior performance to the acid-doped HTL materials due to their low doping density. In this study, a series of pH-neutral CPEs is designed and synthesized with high doping density as HTL materials. Through an elaborate synthetic route, two sulfonate-terminating alkoxyl side chains can be introduced into thiophene, by which the electron-rich, highly soluble, and chemically stable thiophene monomer is synthesized to enable the subsequent polymerization. The CPE PTT-F exhibit a remarkable self-doping property with an enhanced doping density from 2.01 × 1017 to 7.02 × 1018 cm-3. The high work function and the increased doping density of PTT-F-based HTL decrease the depletion region width from 38.4 to 8.1nm at the anode interface, which minimized the energy loss in hole transport. Consequently, a binary OSC modified by PTT-F-based HTL achieve a high PCE of 18.8%. To the best of the knowledge, this is the highest PCE for OSC employing CPE-based HTL. The results from this work demonstrate an encouraging achievement of realizing exceptional hole collection ability in pH-neutral CPEs.