We report a fast and easy method (PACMAN) to assign partial atomic charges on metal-organic framework (MOF) and covalent-organic framework (COF) crystal structures based on graph convolution networks (GCNs) trained on >1.8 million high-fidelity partial atomic charge data obtained from the Quantum Metal-Organic Framework (QMOF) database. The developed model shows outstanding performance, achieving a mean absolute error (MAE) of 0.0055 e (test set performance) while maintaining consistency with DDEC6, Bader, and CM5 charges across diverse chemistry and topologies of MOFs and COFs. We find that the new method accurately assigns partial atomic charges for ion-containing nanoporous materials, which has not been possible in previous machine learning (ML) models. Grand canonical Monte Carlo (GCMC) simulation results for CO2 and N2 uptakes and the Widom particle insertion calculation for Henry's law constant of water results based on PACMAN and the original DDEC6 charges show excellent agreements compared to other ML models reported in the literature. The runtime analysis of the new method demonstrates that the partial atomic charges of MOF and COF structures with up to 500 atoms can be obtained in less than 10 s. An easy-to-use web interface has been developed to facilitate the adoption of the developed model.
Read full abstract