The first wide-view image of multiple structural and phase transformations for MOFs, ranging from crystal state transformations to the extreme limit approaching liquid/glass phase, was presented. The process involves i) an initial crystalline transformation from square-layer framework [Co2(pybz)2(CH3COO)2] ⋅ DMF (Co2) to a 3-fold interpenetrated and ordered vacancies contained framework [Co(pybz)2(CH3OH)2] ⋅ 2CH3OH (CoM) due to in situ disassemble-reassemble, ii) thermal induced departure of a pair of cis-form coordinated methanol in CoM leads to amorphous framework a-dCoM, iii) glass transition to super-cooled liquid scl-dCoM, iv) obtaining MOF glass g-dCoM upon quenching the super-cooled liquid, and v) re-crystallization of super-cooled liquid generates 6-fold interpenetrated dia-net framework [Co(pybz)2]6n (rec-dCoM) under further heating. The access to glass from CoM, provides a new self-perturbation strategy to create MOF glasses without melting. The wider pore size distribution in amorphous/glassy MOFs than crystalline precursor achieved the first time selective hydrocarbon gas separation by breakthrough experiments, which bring efficient separation of 1 : 99 C2H2/C2H4 by either a-dCoM or g-dCoM and produce polymer grade C2H4 with purity≥99.5 % after a single adsorption process. Furthermore, the mixture of 50 : 50 C3H6/C3H8 can be separated by a-dCoM.
Read full abstract