Background: Given the inadequacies of current chemotherapy, there is a need for more effective anticancer agents. Imidazole and thiazole compounds have demonstrated significant biological activity, making them promising candidates. Aims and Objective: This study investigates the anticancer potential of imidazole and thiazole derivatives, focusing on liver cancer. The aim is to synthesize bis-imidazole-thiazole hybrids and evaluate their efficacy as anticancer agents against hepatocellular carcinoma. Methods: The hybrids were synthesized using (2,2'-((1,4-phenylenebis(2-mercapto-4-methyl1H-imidazole-1,5-diyl))bis(ethan-1-yl-1-ylidene))bis(hydrazine-1-carbothioamide), hydrazonoyl halides, and α-halo ketones, catalyzed by DABCO. This method is designed to be fast, yield high amounts of product, and be environmentally friendly. Structural confirmation was provided by FT IR, NMR, and MS spectroscopy. Results: The synthesized hybrids were tested in vitro against HepG-2 and WI-38 cell lines. Compounds 16b, 14a, 16a, and 7b showed significant inhibitory activity, with IC50 values indicating strong inhibition comparable to or better than the standard drug Sorafenib. Conclusion: The bis-imidazole-thiazole hybrids exhibit potent anticancer properties, particularly against hepatocellular carcinoma, making them potential candidates for future cancer therapies. Their selectivity and safety were further demonstrated by their effects on normal WI-38 human fibroblasts.
Read full abstract