Predicting tumor biomarkers with high precision is essential for improving the diagnostic accuracy and developing more effective treatment strategies. This paper proposes a machine learning model that utilizes CT images and biopsy whole slide images (WSI) to classify mesothelin expression levels in pancreatic cancer. By combining multimodal learning and stochastic configuration networks, a radiopathomics mesothelin-prediction system named RPMSNet is developed. The system extracts radiomic and pathomic features from CT images and WSI, respectively, and sends them into stochastic configuration networks for the final prediction. Compared to traditional radiomics or pathomics, this system has the capability to capture more comprehensive image features, providing a multidimensional insight into tissue characteristics. The experiments and analyses demonstrate the accuracy and effectiveness of the system, with an area under the curve of 81.03%, an accuracy of 73.67%, a sensitivity of 71.54%, a precision of 76.78%, and a F1-score of 72.61%, surpassing both single-modality and dual-modality models. RPMSNet highlights its potential for early diagnosis and personalized treatment in precision medicine.
Read full abstract