Significant differences exist in the composition of current milk replacers (MR) and bovine whole milk. This study investigated how the macronutrient profile of 3 different MR formulations containing varying amounts of fat, lactose, and protein, and a whole milk powder (WP), affect postprandial metabolism and gut permeability in male Holstein calves. Sixty-four calves (45.4 ± 4.19 kg [mean ± SD] and 1.8 ± 0.62 d of age) were blocked in order of arrival to the facility and within each block, calves were randomly assigned to 1 of 4 treatments. Treatments included a high-fat MR (HF: 25.0% dry matter [DM] fat, 22.5% protein, 38.6% lactose; n = 14), a high-lactose MR (HL: 44.6% lactose, 22.5% protein, 18.0% fat; n = 17), a high-protein MR (HP: 26.0% protein, 18.0% fat, 41.5% lactose; n = 17), and WP (26.0% fat, 24.5% protein, 38.0% lactose; n = 16). Calves were fed 3.0 L (135 g/L) 3 times daily at 0600, 1200, and 1800 h with a teat bucket. Milk intake was recorded daily for the first 28 d after arrival, and blood sampling and body weight measurements were performed at arrival and on d 7, 14, 21, and 27. Gut permeability was estimated from fractional urinary excretion of indigestible markers (Cr-EDTA, lactulose, and d-mannitol) administered as a single dose on d 21 instead of the morning milk meal. Digestibility was determined simultaneously from a total collection of feces over 24 h. Postprandial dynamics were measured on d 28 by sequential blood sampling over 7.5 h. Dry matter intake of MR over 28 d was slightly greater in calves fed HL and HP than in WP. Recovery of Cr-EDTA and d-mannitol over a 24-h urine collection was greater in calves fed WP and HP than HL calves. Apparent total-tract digestibility of crude ash, protein, and fat did not differ among treatments; however, DM digestibility was lower in calves fed WP than in other treatment groups. In addition, abomasal emptying, as indicated by the area under the curve (AUC) for acetaminophen, was slower in calves fed WP than in calves fed HF and HL. The AUC for postprandial plasma glucose was lower in calves fed HL than WP and HF and lower in calves fed HP than WP. The AUC for postprandial serum insulin was greater in calves fed HP than WP and HF, whereas calves fed HL did not differ from the other treatments. Postprandial triglycerides were greater in calves fed WP, and postprandial adiponectin was higher in calves fed HL than other treatments. The high content of lactose and protein in MR had a major effect on postprandial metabolism. This raises the possibility of optimizing MR formulations to maintain metabolic homeostasis and influence development.