This paper presents a new approach to wheel slip control in Antilock Braking System (ABS) using an Approximated First Order Wheel Slip (AFOWS) Model Reference Adaptive Control (MRAC) based PID (AFOWS-MRAC-PID) controller. An ABS was modeled in a MATLAB/Simulink environment using a quarter car model with the proposed controller. Simulations were conducted with a wide range of adaptation gains (50, 100, 150, 200, and 250) to study the effectiveness of the proposed control system. The results revealed that the proposed system could track and maintain 10% wheel slip and eliminate oscillation (instability) in terms of overshoot associated with conventional PID controllers, particularly on wet and snowy road surfaces, using adaptation gains of 150, 200, and 250. Overall, the proposed system provided the best performance in terms of stopping distance, vehicle braking velocity, and braking torque on all road surfaces with an adaptation gain of 250, although braking on dry road surfaces was the most effective.
Read full abstract