In case the conditions for collecting and storing cereal or leguminous straw are violated, a large part of it becomes unsuitable for use as bedding or a component of the diet for a number of farm animals. Based on the fact that farms can accumulate a significant amount of unusable straw, the problem of effective utilization of this spoiled biomass arises. From an economic and ecological point of view, the method of recycling spoiled straw of various origins into biofertilizer by fermentation using various symbiotic conglomerates of microorganisms is effective. Regulated fermentation improves the mineralization of organic waste and increases the efficiency of straw use in bioconversion units. The problem of the effect of different doses of the domestic biodestructor on the content of microelements in composted oat, wheat and pea straw is not sufficiently studied. Samples of spoiled straw were taken for the experiments, which were fermented in the control group (without introduction of the microbiological preparation) and with introduction of the preparation in doses of 7.0; 14.0 and 28.0 cm3/t. The content of Manganese, Ferrum, Copper, Zinc, and Cobalt was determined in the straw of fermented cereals and legumes. As a result of composting of pea straw, an increase in the content of Ferrum in the biomass was found. With the use of the largest dose of the biodestructor, an increase in the Ferum content by 9.1% compared to the control one was established. The use of a biodestructor affects the growth of Zinc content in pea straw. Fermentation of this biomass at biodestructor doses of 14.0 and 28.0 cm3/t contributes to an increase in its Zinc content, respectively, by 20.9 and 25.5 % relative to the control group. With an increase in the dose of the biodestructor in the straw during its composting, the Manganese content increases in comparison with the indicator in the control group. The content of Cuprum in pea straw is affected by the dose of biodestructor during composting. The use of a biodestructor at a dose of 28.0 cm3/t leads to an increase within the limits of statistical significance in the content of Cuprum in pea straw. It was established that in experimental groups I, II and III, the Cobalt content in fermented pea straw was higher than in the control one by 5.5, 16.6 and 27.7%, respectively.
 With the use of biodestructor in doses of 14.0 and 28.0 cm3/t, a tendency to increase the Ferrum content in wheat straw has been established. The content of Zinc in composted wheat straw biomass from II and III experimental groups increased by a statistically significant value compared to the control one and the indicator in unfermented wheat straw. Fermentation with the participation of a biodestructor contributed to the increase of Manganese in wheat straw. Manganese content in fermented wheat straw has been increased by a statistically significant value relative to the indicator in the control one. Investigating the content of Copper, it has been found that fermentation leads to an increase in the experimental groups of this element, respectively, by 5.5; 16.6 and 27.7 % compared to the control one. In the variants where a biodestructor was used for composting in doses of 14.0 and 28.0 cm3/t, the increase in Cobalt in wheat straw relative to the control one was statistically significant. The highest Ferrum content was found in the fermented mass of spoiled oat straw in the III experimental group where a biodestructor at a dose of 28.0 cm3/t was used for fermentation. During the composting of oat straw, it has been found that the higher the dose of biodestructor, the higher the content of Zinc and Manganese in the biomass. In the II and III research groups due to fermentation, the concentration of Copper in oat straw increased by 18.5 and 37.0 %, respectively, compared to the control indicators. The use of a biodestructor is accompanied by a tendency to increase the content of Cobalt in oat straw compared to the option where composting took place without a biodestructor. Thus, it has been established that composting oat, wheat, and pea straw with the use of a biodestructor contributes to the intensity of its mineralization.
Read full abstract