To investigate the genetic basis of processing quality- and yield-related traits in bread wheat (Triticum aestivum L., AABBDD), a systematic analysis of wheat processing quality- and yield-related traits based on genome-wide association studies (GWASs) of 285 regional test lines of wheat from Hebei province, China, was conducted. A total of 87 quantitative trait loci (QTL), including twenty-one for water absorption (WA), four for wet gluten content, eight for grain protein content, seventeen for dough stability time (DST), thirteen for extension area (EA), twelve for maximum resistance (MR), five for thousand-grain weight (TGW), one for grain length, and six for grain width were identified. These QTL harbored 188 significant single-nucleotide polymorphisms (SNPs). Twenty-five SNPs were simultaneously associated with multiple traits. Notably, the SNP AX-111015470 on chromosome 1A was associated with DST, EA, and MR. SNPs AX-111917292 and AX-109124553 on chromosome 5D were associated with wheat WA and TGW. Most processing quality-related QTL and seven grain yield-related QTL identified in this study were newly discovered. Among the surveyed accessions, 18 rare superior alleles were identified. This study identified significant QTL associated with quality-related and yield-related traits in wheat, and some of them showed pleiotropic effects. This study will facilitate molecular designs that seek to achieve synergistic improvements of wheat quality and yield.