BackgroundWith the widespread use of antibiotics, more attention has been paid to their side effects. We paid extra attention to the impact of antibiotics on children’s bodies. Therefore, we analyzed the characteristic changes in the gut microbiota of children after antibiotic treatment to explore the pathogenesis of antibiotic-associated diseases in more depth and to provide a basis for diagnosis and treatment.MethodsWe recruited 28 children with bronchopneumonia in the western district of Zhuhai, China, and divided them into three treatment groups based on antibiotic type. We took stool samples from children before and 3–5 days after antibiotic treatment. 16S rRNA gene sequencing was used to analyze the effects of antibiotic therapy on the gut microbiota of children. Continuous nonparametric data are represented as median values and analyzed using the Wilcoxon rank-sum test.ResultsWhile alpha diversity analysis found no significant changes in the mean abundance of the gut microbiota of children after a short course of antibiotic treatment, beta diversity analysis demonstrated significant changes in the composition and diversity of the gut microbiota of children even after a short course of antibiotic therapy. We also found that meloxicillin sulbactam can inhibit the growth of Proteobacteria, Bacteroidetes, and Verrucomicrobia, ceftriaxone inhibits Verrucomicrobia and Bacteroides, and azithromycin inhibits Fusobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. We further performed a comparative analysis at the genus level and found significantly different clusters in each group. Finally, we found that azithromycin had the greatest effect on the metabolic function of intestinal microbiota, followed by ceftriaxone, and no significant change in the metabolic process of intestinal microbiota after meloxicillin sulbactam treatment.ConclusionsAntibiotic treatment significantly affects the diversity of intestinal microbiota in children, even after a short course of antibiotic treatment. Different classes of antibiotics affect diverse microbiota primarily, leading to varying alterations in metabolic function. Meanwhile, we identified a series of intestinal microbiota that differed significantly after antibiotic treatment. These groups of microbiota could be used as biomarkers to provide an additional basis for diagnosing and treating antibiotic-associated diseases.