The influence of the temperature and different light qualities emitted by light-emitting diodes (LEDs) and fluorescent lamps (Fl) on the micropropagation of the tree fern Cyathea delgadii was evaluated. The most efficient somatic embryo production was obtained on internode explants at 22 °C. The optimal temperature range for obtaining well-developed plants was 24–28 °C. This stimulated the elongation and development of the first leaf and the formation of the next leaf and roots primordia. Temperatures lower than 24 °C and higher than 28 °C inhibited the formation of young sporophyte organs and delayed their development. The RBUV (35% red, 15% blue, and 50% UV) and B (100% blue) lights and Fl light were beneficial for the sporophyte production on internode explants. However, plants obtained under RBUV light were undeveloped. The white LED light stimulated the number of explants capable of gametophyte production and development. The RB light (70% red and 30% blue) enhanced the number of roots of newly-formed plants. Most of the LED lights tested had a good impact on root elongation compared to Fl light and constant darkness. The R light (100% red) benefits leaf development and elongation. Research shows that temperature and LED lightning play a significant role in the process of morphogenesis in C. delgadii, significantly affecting the embryogenic competence of somatic cells and the development of sporophytes.