A C3-symmetric molecule was found to form organic nanotubes through supramolecular gel formation in organic solvents. These nanotubes can be dispersed in toluene without destroying the tubular nanostructures. Using the dispersions of these organic nanotubes as "spreading solutions", Langmuir-spreading films of these nanotubes were formed. Through repeated compression and expansion cycles, the nanotubes can be aligned to a certain extent. The formed Langmuir films could be subsequently transferred to a solid substrate, and the well-aligned nanotube films were constructed by Langmuir-Blodgett film deposition technique. Interestingly, many guests including polymers, water-soluble or oil-soluble organic molecules can be encapsulated into the nanotubes and further spread on a water subphase. Through elaborate control, large-scale parallel alignment of self-assembled organic nanotubes encapsulated by guests was also realized. This study implies that 2D hierarchical alignment of one-dimensional organic nanostructures can be realized using a simple method.
Read full abstract