AbstractLet{\mathbb{H}}be a separable Hilbert space. In this paper, we establish a generalization of Walnut’s representation and Janssen’s representation of the{\mathbb{H}}-valued Gabor frame operator on{\mathbb{H}}-valued weighted amalgam spaces{W_{\mathbb{H}}(L^{p},L^{q}_{v})},{1\leq p,q\leq\infty}. Also, we show that the frame operator is invertible on{W_{\mathbb{H}}(L^{p},L^{q}_{v})},{1\leq p,q\leq\infty}, if the window function is in the Wiener amalgam space{W_{\mathbb{H}}(L^{\infty},L^{1}_{w})}. Further, we obtain the Walnut representation and invertibility of the frame operator corresponding to Gabor superframes and multi-window Gabor frames on{W_{\mathbb{H}}(L^{p},L^{q}_{v})},{1\leq p,q\leq\infty}, as a special case by choosing the appropriate Hilbert space{\mathbb{H}}.