Graphene, a single-atom-thick sheet of sp-bonded carbon atoms, has generatedmuch interest due to its high specific area and novel mechanical, electrical, and thermal properties. Recent advances in the production of bulk quantities of exfoliated graphene sheets from graphite have enabled the fabrication of graphene–polymer composites. Such composites show tremendous potential for mechanical-property enhancement due to their combination of high specific surface area, strong nanofiller–matrix adhesion and the outstanding mechanical properties of the sp carbon bonding network in graphene. Graphene fillers have been successfully dispersed in poly(styrene), poly(acrylonitrile) and poly(methyl methacrylate) matrices and the responses of their Young’s modulus, ultimate tensile strength, andglass-transition temperaturehave been characterized. However, to the best of our knowledge there is no report on the fracture toughness and fatigue properties of graphene–polymer composites. Fracture toughness describes the ability of a material containing a crack to resist fracture and it is a critically important material property for design applications. Fatigue involves dynamic propagation of cracks under cyclic loading and it is one of the primary causes of catastrophic failure in structural materials. Consequently, the material’s resistance to fracture and fatigue crack propagation are of paramount importance to prevent failure. Herein we report the fracture toughness, fracture energy, and fatigue properties of an epoxy polymer reinforced with various weight fractions of functionalized graphene sheets. Remarkably, only 0.125% weight of functionalized graphene sheets was observed to increase the fracture toughness of the pristine (unfilled) epoxy by 65% and the fracture energy by 115%.Toachievecomparableenhancement,carbonnanotube (CNT) and nanoparticle epoxy composites require one to two orders of magnitude larger weight fraction of nanofillers. Under fatigue conditions, incorporation of 0.125% weight of functionalized graphene sheets drastically reduced the rate of crack propagation in the epoxy 25-fold. Fractography analysis
Read full abstract