ABSTRACTThe transition from recreational drug use to addiction involves pathological learning processes that support a persistent shift from flexible, goal‐directed to habit behavioral control. Here, we examined the molecular mechanisms supporting altered function in hippocampal (HPC) and dorsolateral striatum (DLS) memory systems following abstinence from repeated cocaine. After 3 weeks of cocaine abstinence (experimenter‐ or self‐administered), we tested new behavioral learning in male rats using a dual‐solution maze task, which provides an unbiased approach to assess HPC‐ versus DLS‐dependent learning strategies. Dorsal hippocampus (dHPC) and DLS brain tissues were collected after memory testing to identify transcriptional adaptations associated with cocaine‐induced shifts in behavioral learning. Our results demonstrate that following prolonged cocaine abstinence rats show a bias toward the use of an inflexible, habit memory system (DLS) in lieu of a more flexible, easily updated memory system involving the HPC. This memory system bias was associated with upregulation and downregulation of brain‐derived neurotrophic factor (BDNF) gene expression and transcriptionally permissive histone acetylation (acetylated histone H3, AcH3) in the DLS and dHPC, respectively. Using viral‐mediated gene transfer, we overexpressed BDNF in the dHPC during cocaine abstinence and new maze learning. This manipulation restored HPC‐dependent behavioral control. These findings provide a system‐level understanding of altered plasticity and behavioral learning following cocaine abstinence and inform mechanisms mediating the organization of learning and memory more broadly.
Read full abstract