Acclimatization to moderate high altitude accompanied by training at low altitude (living high–training low) has been shown to improve sea level endurance performance in accomplished, but not élite, runners. Whether élite athletes, who may be closer to the maximal structural and functional adaptive capacity of the respiratory (i.e. oxygen transport from environment to mitochondria) system, may achieve similar performance gains is unclear. To answer this question, we studied 14 élite men and eight élite women before and after 27 days of living at 2500 m while performing high-intensity training at 1250 m. The altitude sojourn began 1 week after the USA Track and Field National Championships, when the athletes were close to their season's fitness peak. Sea level 3000-m time trial performance was significantly improved by 1.1% (95% confidence limits 0.3–1.9%). One-third of the athletes achieved personal best times for the distance after the altitude training camp. The improvement in running performance was accompanied by a 3% improvement in maximal oxygen uptake (72.1 ± 1.5–74.4 ± 1.5 ml kg− 1 min− 1). Circulating erythropoietin levels were near double initial sea level values 20 h after ascent (8.5 ± 0.5–16.2 ± 1.0 IU ml−1). Soluble transferrin receptor levels were significantly elevated on the 19th day at altitude, confirming a stimulation of erythropoiesis (2.1 ± 0.7–2.5 ± 0.6 μ g ml-1). Hb concentration measured at sea level increased 1 g dl−1 over the course of the camp (13.3 ± 0.2–14.3 ± 0.2 g dl−1). We conclude that 4 weeks of acclimatization to moderate altitude, accompanied by high-intensity training at low altitude, improves sea level endurance performance even in élite runners. Both the mechanism and magnitude of the effect appear similar to that observed in less accomplished runners, even for athletes who may have achieved near maximal oxygen transport capacity for humans.
Read full abstract