The use of competitive crops in successional rotations has been shown to reduce the growth and establishment of annual weeds by the depletion of the weed seedbank in broadacre cropping systems. However, the impact of specific crop rotational sequences contributing to weed seedbank density has not been quantified in the Riverina region of southern Australia. Trials were established in two locations in 2014–2018 to quantify the impact of selected annual rotations featuring grain, pulse, and pasture crops on weed infestation and seedbank dynamics with a focus on winter and summer annual weeds. The weed seedbank dynamics were evaluated by a twice-annual soil sampling regime (at planting and harvest), followed by soil sample screening for weed propagule germination and seedling establishment in a subsequent controlled-environment screening performed from 2014–2020. The weed seedling density decreased in the cereal rotations in years experiencing average to above-average rainfall, as crops established a dense canopy leading to reduced weed establishment and fecundity. Several rotational treatments were effective in suppressing the weed propagule numbers over time, including those using dual-purpose cereals only or a canola break-crop along with the cereals. Rotational selection can be an important and cost-effective tool in integrated weed management systems when applied over multiple growing seasons.