Weed infestation in agricultural fields significantly diminishes crop yields. Herbicides are widely used as a primary method of weed control. Developing herbicide-resistant crops through the expression of resistant genes represents a sustainable approach. This study generated wheat germplasms highly resistant to 4-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibiting herbicides by transforming the rice HPPD INHIBITOR SENSITIVE 1 (OsHIS1) gene into Xinong 511, conferring resistance to mesotrione at levels up to nine times the typical field application rate (1350 g ai ha-1). Agronomic trait evaluations under greenhouse and field conditions showed no additional effects on wheat. Herbicide susceptibility assays confirmed the specific resistance to different HPPD inhibitors. Transcriptome and metabolome analyses revealed regulation of flavonoid and photosynthesis-antenna protein pathways in the herbicide functional. Collectively, OsHIS1 could be applied in the production of herbicide-resistant wheat.
Read full abstract