Myelodysplastic syndrome (MDS) is a heterogeneous disorder with diverse prognoses influenced by cytopenias, genetic variants, and myeloblast proportions in the bone marrow. Accurate prognosis prediction and tailored treatment plans are essential. The International Prognostic Scoring System-Molecular (IPSS-M), which additionally reflects the impact of MDS-related genetic mutations to the clinical and laboratory information, is anticipated to offer superior prognostic accuracy compared to existing systems like the Revised International Prognostic Scoring System (IPSS-R). Despite its statistical complexity, its web-based calculation and ease of discussing results with patients using intuitive data sets provide notable advantages. Progress in MDS treatment, exemplified by effective anemia correction with an erythropoiesis-maturation agent in <i>SF3B1</i>-mutated cases and efforts to refine poor prognoses in <i>TP53</i>-mutated cases, reflects the evolving landscape of genetic-based interventions in MDS. Advancements in genetic diagnostic technology, combined with enhanced knowledge of the bone marrow niche, are anticipated to lead to significant improvement in MDS treatment outcomes in the future.
Read full abstract