Matrix properties are a type of property of categories which includes the ones of being Mal’tsev, arithmetical, majority, unital, strongly unital, and subtractive. Recently, an algorithm has been developed to determine implications M⇒lex∗N\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ extrm{M}\\Rightarrow _{\ extrm{lex}_*}\ extrm{N}$$\\end{document} between them. We show here that this algorithm reduces to constructing a partial term corresponding to N\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ extrm{N}$$\\end{document} from a partial term corresponding to M\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ extrm{M}$$\\end{document}. Moreover, we prove that this is further equivalent to the corresponding implication between the weak versions of these properties, i.e., the one where only strong monomorphisms are considered instead of all monomorphisms.