This paper presents an innovative approach using Dynamical Systems Theory (DST) for interplanetary orbit insertion into Saturn−Titan three−body orbits. By leveraging DST, this study identifies invariant manifolds guiding a spacecraft into Titan−centered Distant Retrograde Orbits (DROs), strategically selected for their scientific significance. Subsequently, Particle Swarm Optimization (PSO) is employed to fine−tune the insertion parameters, thereby minimizing ΔV. The results demonstrate that the proposed method allows for a reduction in ΔV of over 70% compared to conventional approaches like patched conics−based flybys (2.68 km/s vs. 9.23 km/s), albeit with an extended time of flight, which remains notably faster than weak stability boundary transfers. This paper serves as an interplanetary mission planning methodology to optimize spacecraft trajectories for the exploration of the Saturn−Titan system.