A coarse-grained model combining the acceptor-hydrogen-donor 3-body potential is first developed in this work to explore the fracture property and microscopic mechanisms of associative hydrogen-bonded polymers (AHBPs). Next, a triaxial deformation mode is performed to reveal that the fracture toughness of AHBPs initially improves and then is reduced as the number of active groups increases. By characterizing the stress decomposition, the strong hydrogen bond (HB) network improves the maximum stress but reduces the elongation. The destructive process of the HB network is described by quantifying the broken number and reduced energy of HBs. Interestingly, the strength of a single HB first decreases and then rises with strain. The initial decrease is mainly caused by the disruption of strong/moderate HBs, while the following rise is due to the further breakage of weak HBs and partial recovery of strong/moderate HBs. Meanwhile, the formed clusters of HBs due to the self-attraction act as the physical cross-links, whose evolution process is recorded by analyzing their number and size. Following it, the orientation degree and asphericity factor are calculated with strain to reflect the change in chain configuration, which is influenced by the HB network. Subsequently, the nucleation and growth process of voids is quantified. More than 90% of voids are nucleated in the polymer region, while others are in the HB region, which can be proved by the local elastic modulus and snapshots. The growth and coalescence rate of the voids can be suppressed by the strong HB network. Finally, the fracture toughness of AHBPs exhibits a continuous increase with improving strength of HBs due to the strong HB network. In summary, our work presents a clear and novel comprehension of the fracture property of AHBPs at the molecular scale.
Read full abstract