<p>In this paper, we introduced a new class of weak Hardy spaces, denoted by $ H^{p, \infty}_b $, and provided an analysis of their atomic decomposition. As an application, we established the boundedness of Calderón-Zygmund operators (CZOs) from $ H^p $ to $ H^{p, \infty}_b $ including cases at the critical exponent</p><p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ p = \frac{n}{n+\delta}, $\end{document} </tex-math></disp-formula></p><p>where $ \delta $ represents the regularity index of the distributional kernel. Moreover, the boundedness of CZOs from $ H^{p, \infty} $ to $ H^{p, \infty}_b $ was demonstrated for</p><p><disp-formula> <label/> <tex-math id="FE2"> \begin{document}$ \frac{n}{n+\delta}&lt;p\leq 1. $\end{document} </tex-math></disp-formula></p>