The fundamental physics of the magnetic field distribution in a plasma implosion with a preembedded magnetic field is investigated within a gas-puff Z pinch. Time and space resolved spectroscopy of the polarized Zeeman effect, applied for the first time, reveals the impact of a preembedded axial field on the evolution of the current distribution driven by a pulsed-power generator. The measurements show that the azimuthal magnetic field in the imploding plasma, even in the presence of a weak axial magnetic field, is substantially smaller than expected from the ratio of the driving current to the plasma radius. Much of the current flows at large radii through a slowly imploding, low-density plasma. Previously unpredicted observations in higher-power imploding-magnetized-plasma experiments, including recent, unexplained structures observed in the magnetized liner inertial fusion experiment, may be explained by the present discovery. The development of a force-free current configuration is suggested to explain this phenomenon.
Read full abstract