In this paper, a novel silicon-on-chip integrated 4 × 1 wavelength division multiplexing (WDM) multiplexer has been developed. This is the first time that the multiplexer design incorporates arrayed electro-optical modulators with crosstalk cancellation. The design utilizes two types of electro-optic modulators in each channel. The first modulator, based on 1D-PhCNBC, extracts the desired wavelengths from the WDM spectrum. The second modulator, based on coupled hybrid plasmonics, acts as a switch to eliminate crosstalk of the desired optic wavelength signal at the multiplexer output. By combining the advantages of electro-optical modulators and crosstalk cancellation techniques, we anticipate that our proposed design contributes to the advancement of WDM multiplexing technology and facilitates the implementation of efficient and compact optical communication systems. Additionally, this synergy enables enhanced performance, reduced signal interference, and improved signal quality, leading to more reliable and high-speed data transmission in optical networks. The functionality of the device is theoretically simulated using 3D-FDTD (Finite-Difference Time-Domain) method.
Read full abstract