It is challenging to apply the receiver function method to teleseisms recorded by ocean-bottom seismographs (OBSs) due to a specific working environment that differs from land stations. Teleseismic incident waveforms reaching the area beneath stations are affected by multiple reflections generated by seawater and sediments and noise resulting from currents. Furthermore, inadequate coupling between OBSs and the seabed basement and the poor fidelity of OBSs reduce the signal-to-noise ratio (SNR) of seismograms, leading to the poor quality of extracted receiver functions or even the wrong deconvolution results. For instance, the poor results cause strong ambiguities regarding the Moho depth. This study uses numerical modeling to analyze the influences of multiple reflections generated by seawater and sediments on H-kappa stacking and the neighborhood algorithm. Numerical modeling shows that seawater multiple reflections are mixed with the coda waves of the direct P-wave and slightly impact the extracted receiver functions and can thus be ignored in subsequent inversion processing. However, synthetic seismograms have strong responses to the sediments. Compared to the waveforms of horizontal and vertical components, the sedimentary responses are too strong to identify the converted waves clearly. The extracted receiver functions correspond to the above influences, resulting in divergent results of H-kappa stacking (i.e., the Moho depth and crustal average VP/VS ratio are unstable and have great uncertainties). Fortunately, waveform inversion approaches (e.g., the neighborhood algorithm) are available and valid for obtaining the S-wave velocity structure of the crust–upper mantle beneath the station, with sediments varying in thickness and velocity.
Read full abstract