An electroanalytical method based on disposable screen-printed carbon electrodes modified with non-toxic carbonaceous nanodots is proposed as a reliable and effective device for codeine determination in biological fluids and soft drinks. Graphene quantum dots (GQDs), carbon quantum dots (CQDs) and carbon nanodots (CNDs) were evaluated as electrode modifiers for the determinationof the drug. The electroactive areas of the modified electrodes were assessed by cyclic voltammetry using potassium ferricyanide. Results demonstrated that GQDs provided the best analytical response for codeine, displaying an intense and well-defined anodic wave approximately 0.9V vs reference electrode. The method exhibits an acceptable linear dynamic range, low limits of detection and quantification (0.21 and 0.73µM, respectively), and satisfactory precision (below 3.9% expressed as relative standard deviation (RSD)) in saliva. Only the analysis of biofluids requires a simple extraction protocol. The feasibility and applicability of this novel approach were assessed by determining codeine in different matrices, with recoveries ranging from 69 to 112%. This cost-effective, simple, easily miniaturised and portable method was applied not only to biofluids but also for the direct detection of codeine in soft drinks combined with a codeine-enriched syrup, a medication that is being used to adulterate beverages, particularly at specific events (drinking and nightclub parties). There is no need forany sample treatment, demonstrating its versatility in analysing beverages for potential adulteration as well.