The quantum theory of the electromagnetic field uncovered that classical forms of light were indeed produced by distinct superpositions of nonclassical multiphoton wave packets. This situation prevails for partially coherent light, the most common kind of classical light. Here, for the first time, to our knowledge, we demonstrate the extraction of the constituent multiphoton quantum systems of a partially coherent light field. We shift from the realm of classical optics to the domain of quantum optics via a quantum representation of partially coherent light using its complex-Gaussian statistical properties. Our formulation of the quantum Gaussian-Schell model (GSM) unveils the possibility of performing photon-number-resolving (PNR) detection to isolate the constituent quantum multiphoton wave packets of a classical light field. We experimentally verified the coherence properties of isolated vacuum systems and wave packets with up to 16 photons. Our findings not only demonstrate the possibility of observing quantum properties of classical macroscopic objects but also establish a fundamental bridge between the classical and quantum worlds.
Read full abstract