Digital watermarking serves as a crucial tool for tracing copyright infringements and ensuring the authenticity and integrity of sensitive information. The fundamental concept involves embedding a watermark in the host information, ensuring its undetectability by unauthorized parties. The efficacy of a watermarking scheme mainly depends on achieving high levels of imperceptibility, robustness, and embedding capacity. These attributes are intricately linked to both the selection of the host information segment and the embedding factor. Existing schemes often (i) employ the entire host information for embedding, incurring computational expenses, and (ii) optimize the embedding factor without considering imperceptibility, robustness, and embedding capacity simultaneously, resulting in less secure watermarks. To address these limitations, we introduce a novel watermarking scheme leveraging elliptic curves (ECs) and genetic algorithms (GA). We model the choice of the embedding part by generating pseudo-random numbers over ECs, taking advantage of their proven sensitivity, security, and low computational complexity. Due to parallel search and adaptability to non-linear relationships of GA, the scheme employs genetic optimization with a multivariate objective function to establish a balance between imperceptibility, robustness, and embedding capacity for optimal watermarked generation. Rigorous analysis and comparisons demonstrate that our proposed scheme attains significantly higher imperceptibility, robustness, and embedding capacity compared to existing optimized schemes. Furthermore, our scheme exhibits a speed advantage, being up to 278 and 21 times faster than optimized and non-optimized schemes, respectively, thereby affirming its practical applicability.
Read full abstract