The Advanced Geostationary Radiation Imager (AGRI) sensor on board the geostationary satellite Fengyun-4B (FY-4B) is capable of capturing particles in different phases in the atmospheric environment and acquiring aerosol observation data with high spatial and temporal resolution. To understand the quality of the Land Aerosol (LDA) product of AGRI and its application prospects, we conducted a comprehensive evaluation of the AGRI LDA AOD. Using the 550 nm AGRI LDA AOD (550 nm) of nearly 1 year (1 October 2022 to 30 September 2023) to compare with the Aerosol Robotic Network (AERONET), MODIS MAIAC, and Himawari-9/AHI AODs. Results show the erratic algorithmic performance of AGRI LDA AOD, the correlation coefficient (R), mean error (Bias), root mean square error (RMSE), and the percentage of data with errors falling within the expected error envelope of ±(0.05+0.15×AODAERONET) (within EE15) of the LDA AOD dataset are 0.55, 0.328, 0.533, and 34%, respectively. The LDA AOD appears to be overestimated easily in the southern and western regions of China and performs poorly in the offshore areas, with an R of 0.43, a Bias of 0.334, a larger RMSE of 0.597, and a global climate observing system fraction (GCOSF) percentage of 15% compared to the inland areas (R = 0.60, Bias = 0.163, RMSE = 0.509, GCOSF = 17%). Future improvements should focus on surface reflectance calculation, water vapor attenuation, and more suitable aerosol model selection to improve the algorithm's accuracy.