BackgroundSeveral healthcare-associated infection outbreaks have been caused by waterborne Pseudomonas aeruginosa exhibiting its ability to colonize water systems and resist conventional chlorine treatment. This study aims to investigate the occurrence of Pseudomonas aeruginosa in hospital drinking water systems and the antimicrobial resistance profiles (antibiotic and chlorine resistance) of isolated strains.MethodsWe investigated the presence of Pseudomonas aeruginosa in water and biofilms developed in nine hospital water systems (n = 192) using culture-based and molecular methods. We further assessed the survival of isolated strains after exposure to 0.5 and 1.5 ppm concentrations of chlorine. The profile of antibiotic resistance and presence of antibiotic resistance genes in isolated strains were also investigated.ResultsUsing direct PCR method, Pseudomonas aeruginosa was detected in 22% (21/96) of water and 28% (27/96) of biofilm samples. However, culturable Pseudomonas aeruginosa was isolated from 14 samples. Most of P. aeruginosa isolates (86%) were resistant to at least one antibiotic (mainly β-lactams), with 50% demonstrating multidrug resistance. Moreover, three isolates harbored intI1 gene and two isolates contained blaOXA−24,blaOXA−48, and blaOXA−58 genes. Experiments with chlorine disinfection revealed that all tested Pseudomonas aeruginosa strains were resistant to a 0.5 ppm concentration. However, when exposed to a 1.5 ppm concentration of chlorine for 30 min, 60% of the strains were eliminated. Interestingly, all chlorine-resistant bacteria that survived at 30-minute exposure to 1.5 ppm chlorine were found to harbor the intI1 gene.ConclusionsThe detection of antimicrobial resistant Pseudomonas aeruginosa in hospital water systems raises concerns about the potential for infections among hospitalized patients. The implementation of advanced mitigation measures and targeted disinfection methods should be considered to tackle the evolving challenges within hospital water systems.
Read full abstract