We investigated thermo–hydro–mechanical (T-H–M) coupled behavior observed during the full-scale heater emplacement experiment at the Mont-Terri underground research laboratory conducted in the Opalinus clay as part of the DECOVALEX-2023 Task C project. Utilizing the OGS-FLAC simulator, we created a three-dimensional model to simulate multiphase flow in the experiment, applying extended Philip and de Vries’ model and incorporating the anisotropic T–H–M properties of the Opalinus clay. The simulation, which included a ventilation process, spanned five years of heating experiments and successfully replicated the measured temperature, pore pressure, displacement, and relative humidity results in bentonite and host rock during the experiment. The analysis revealed that capillary pressure significantly influenced the pore pressure change in the host rock near the tunnel, while thermal pressurization became dominant with increasing distance. Consequently, we conducted a sensitivity analysis on a simplified model to evaluate the effect of capillary pressure on the disposal system. Capillarity is a dominant factor for the multiphase flow depending on the distance from the heat. Variations in capillary pressure were observed depending on the gas entry pressure and water retention model, indicating that the capillarity of unsaturated bentonite could inherently affect the T–H–M results within the disposal system.