Developing Mn-based water-oxidation reaction (WOR) catalysts is key for renewable energy storage, utilizing Mn's abundance, cost-effectiveness, and natural role. Cerium(IV) ammonium nitrate (CAN) has been widely utilized as a sacrificial oxidant in the exploration of WOR catalysts. In this study, advanced techniques, such as X-ray absorption spectroscopy (XAS), in situ Raman spectroscopy, and in situ electron paramagnetic resonance (EPR), to delve into the WOR facilitated by CAN and birnessite were employed. XANES analysis has demonstrated that the average oxidation states (AOSs) of Mn in birnessite, a birnessite/CAN mixture, and in the birnessite/CAN mixture postwater addition are 3.7, 3.8, and 3.9, respectively. In situ Raman spectroscopy performed in the presence of birnessite and CAN revealed a distinct peak at 784 cm-1, which is attributed to Mn(IV)═O. A shift of this peak to 769 cm-1 in H218O confirms its association with Mn(IV)═O. No change in this peak was observed in D2O, further supporting the notion that it is linked to Mn(IV)═O rather than Mn-OH (D). Furthermore, EPR spectroscopy shows the presence of Mn(IV). It is suggested that the WOR mechanism initiates with the oxidation of birnessite by CAN, which enhances the concentration of Mn(IV) sites in the birnessite structure. Under acidic conditions, birnessite, enriched in Mn(IV), facilitates oxygen evolution and subsequently transitions into a form with reduced Mn(IV) levels. This process highlights the critical function of the Mn (hydr)oxide structure, similar to its role in the water-oxidizing complex of Photosystem II, where it serves as charge storage for oxidizing equivalents from CAN, paving the way for a four-electron reaction that drives the WOR.
Read full abstract