In this work, self-healing cellulose nanocrystals/fluorinated polyacrylate with dual dynamic networks of photoreversible crosslinking network and high-density hydrogen bonds was prepared by Pickering emulsion polymerization. The main work was to study the effects of 7-(2-methacryloyloxy)-4-methylcoumarin (CMA) and 2-ureido-4[1H]-pyrimidinone methyl methacrylate (UPyMA) monomer dosage on emulsion polymerization and latex film properties. The monomer conversion increased first and then decreased as the CMA and UPyMA monomer dosage increased, while a reverse trend was noted for the particle size and particle size distribution. Incorporating UPyMA allowed the rapid formation of hydrogen bonds at the crosslinking sites, which increased the interaction force between the healing surfaces. Besides, reversible photocrosslinking reaction of coumarin groups provided another support for self-healing performance. Moreover, the influence of self-healing temperature, self-healing time and UV irradiation on the self-healing ability was also systematically investigated The tensile strength of the prepared cellulose nanocrystals/fluorinated polyacrylate latex film exhibited a self-healing efficiency of 91.4 % under 365 nm UV irradiation and 80 °C for 12 h. The latex film had excellent thermal stability as was shown by TG and DTG analyses. The outstanding self-healing capability of latex film was attributed to the reversible photodimerization of coumarin groups and multiple hydrogen bonds. In addition, the water-oil repellent and mechanical properties of the latex films were improved as the CMA and UPyMA monomer dosage increased.