Traditional laboratory-based water quality monitoring and testing approaches are soon to be outdated, mainly because of the need for real-time feedback and immediate responses to emergencies. The more recent wireless sensor network (WSN)-based techniques are evolving to alleviate the problems of monitoring, coverage, and energy management, among others. The inclusion of the Internet of Things (IoT) in WSN techniques can further lead to their improvement in delivering, in real time, effective and efficient water-monitoring systems, reaping from the benefits of IoT wireless systems. However, they still suffer from the inability to deliver accurate real-time data, a lack of reconfigurability, the need to be deployed in ad hoc harsh environments, and their limited acceptability within industry. Electronic sensors are required for them to be effectively incorporated into the IoT WSN water-quality-monitoring system. Very few electronic sensors exist for parameter measurement. This necessitates the incorporation of artificial intelligence (AI) sensory techniques for smart water-quality-monitoring systems for indicators without actual electronic sensors by relating with available sensor data. This approach is in its infancy and is still not yet accepted nor standardized by the industry. This work presents a smart water-quality-monitoring framework featuring an intelligent IoT WSN monitoring system. The system uses AI sensors for indicators without electronic sensors, as the design of electronic sensors is lagging behind monitoring systems. In particular, machine learning algorithms are used to predict E. coli concentrations in water. Six different machine learning models (ridge regression, random forest regressor, stochastic gradient boosting, support vector machine, k-nearest neighbors, and AdaBoost regressor) are used on a sourced dataset. From the results, the best-performing model on average during testing was the AdaBoost regressor (a MAE¯ of 14.37 counts/100 mL), and the worst-performing model was stochastic gradient boosting (a MAE¯ of 42.27 counts/100 mL). The development and application of such a system is not trivial. The best-performing water parameter set (Set A) contained pH, conductivity, chloride, turbidity, nitrates, and chlorophyll.