AbstractThe European Water Framework Directive demands to assess and report the chemical and ecological status of water bodies (WB). Linking their status to drivers and pressures and deriving suitable mitigation measures require knowledge of the shape and area of WB catchments. We derived a network of 26 570 WB catchments in Germany using the hydrologically‐defined drainage basins of the German federal states. We established a network of 338 149 drainage basins. This network underwent plausibility checks and a validation with the catchment areas of 348 monitoring stations across Germany. To this network, we assigned the longest intersecting or the next downstream WB code. To account for geometric inaccuracies we revised spurious intersections resulting in splittings and cycles in the WB network. As WB may be ecologically but not hydrologically well defined, we split them at confluences and intersections. The network of drainage basins matched the monitoring stations with a Nash‐Sutcliffe efficiency of 1.00. The final WB network contained 11 005 out of the 11 586 original WBs longer than 1 m. The corresponding local catchment areas range from <<0.0001 to 446 km2, with a median of 10 km2. The dataset combines the requirements of hydrological and ecological modelling applications at basin or national scales with the needs of the EU reporting which can foster their acceptance by state authorities and river‐basin management.
Read full abstract