Considerable advancements have been made in the development of hydrophobic membranes for membrane distillation (MD). Nonetheless, the environmentally responsible disposal of these membranes poses a critical concern due to their synthetic composition. Herein, an eco-friendly dual-layered biopolymer-based membrane was fabricated for water desalination. The membrane was electrospun from two bio-polymeric layers. The top hydrophobic layer comprises polycaprolactone (PCL) and the bottom hydrophilic layer from cellulose acetate (CA). Additionally, silica nanoparticles (SiO2 NPs) were electrosprayed onto the top layer of the dual-layered PCL/CA membrane to enhance the hydrophobicity. The desalination performance of the modified PCL-SiO2/CA membrane was compared with the unmodified PCL/CA membrane using a direct contact membrane distillation (DCMD) unit. Results revealed that silica remarkably improves membrane hydrophobicity. The modified PCL-SiO2/CA membrane demonstrated a significant increase in water contact angle of 152.4° compared to 119° for the unmodified membrane. In addition, PCL-SiO2/CA membrane has a smaller average pore size of 0.23 ± 0.16 μm and an exceptional liquid entry pressure of water (LEPw), which is 3.8 times higher than that of PCL/CA membrane. Moreover, PCL-SiO2/CA membrane achieved a durable permeate flux of 15.6 kg/m2.h, while PCL/CA membrane showed unstable permeate flux decreasing approximately from 25 to 12 kg/m2.h over the DCMD test time. Furthermore, the modified PCL-SiO2/CA membrane achieved a high salt rejection value of 99.97% compared to a low value of 86.2% for the PCL/CA membrane after 24 h continuous DCMD operation. In conclusion, the proposed modified PCL-SiO2/CA dual-layer biopolymeric-based membrane has considerable potential to be used as an environmentally friendly membrane for the MD process.
Read full abstract