Nitrogen injection technology has become an important production technology after water injection development in the karst fracture-vuggy reservoir in Tahe Oilfield. However, due to the influence of reservoir heterogeneity and the high mobility of gas fluid, nitrogen easily forms a dominant channel and gas channeling occurs, and the recovery effect time is short. Based on this, a visual surface karst model is designed and created to study nitrogen foam-assisted gas drive. The results show that after gas channeling occurs in the dominant channel of nitrogen flooding, foam injection-assisted gas flooding can improve oil recovery. In the longitudinal direction, foam-assisted gas drive mainly displaces the remaining oil because of gravity differentiation and the reduction of oil–water interfacial tension. In the horizontal direction, foam-assisted gas drive is mainly used to block the large pore cracks and dominant channels, promote the gas to turn into large tortuous and small cracks, and expand the swept efficiency of the gas. After forming the dominant channel, injecting 0.3 pv salt-sensitive foam with a gas–liquid ratio of 2:1 in the middle of the gas channel can improve the recovery rate of the model from 4% to about 25%, and the recovery rate can be increased by about 20%, which improves the effect of gas flushing and improves the development efficiency of the oil field at the same time.
Read full abstract