In the thermal circuits of domestic steam turbines, mixing-type low-pressure heaters (LPH) with free-flow jet water distribution and counter-flow of water and steam are widely used. The choice of the counterflow variant of the media movement ensures the most efficient heat transfer. However, the technical problem of ensuring reliable operation of LPH in the entire range of design loads of TPP and NPP power units is still relevant.During the commissioning and operation of mixing-type LPH in 800÷1200 MW turbines of TPP and NPP, the presence of metal knocks in the zone of the check valve, hydraulic shocks in the heating section were revealed. A priori, these phenomena indicated design flaws in LPH or manufacturing defects in their production. Research carried out by NPO CKTI specialists showed that periodic hydraulic shocks in the heating section and metal knocks occur as a result of uneven distribution around the circumference of the main condensate and steam supply. This leads to a breakdown of the check valve and the destruction of perforated plates and off-design heating of water in the volume of the annular LPH water chamber. To clarify the causes of the damage, develop recommendations for the reconstruction of the apparatus and further account for the design, two series of experimental studies were carried out on mixing-type heaters of 800 MW turbine units PNSV-2000-1 and PNSV-2000-2 manufactured at PJSC Krasny Kotelshchik. The purpose of the experimental studies was to determine the change in the water level in the water chamber and the heating of the main condensate in the elements of the heating compartment during normal operation of the power unit at loads of 400÷850 MW. Based on the results of the research, the method for calculating the mixing-type LPH has been refined, taking into account the revealed non-uniformity of water heating in the water chamber, recommendations for their reconstruction have been developed and implemented.
Read full abstract