To improve the efficiency of nitrogen (N) fertilization, it is necessary to perform rapid direct measurements in the field rather than time-consuming laboratory-based chemical analysis. Herein, crop and soil data from the early stages of cabbage growth were acquired through two fall cultivations. Chlorophyll meter value, height, and projected leaf area were evaluated as crop indicators. A positive correlation was observed between the projected leaf area or its rate of increase 2–3 weeks after transplantation and head fresh weight (FW). After comparing two water-content reflectometers (WCR) and a nitrate sensor, we selected a WCR with a 12 cm-long rod as the soil indicator. The diagnostic method was verified using varying amounts of N basal fertilizer during spring cultivation. The variable rate of N top dressing (25, 50, and 75% total N) based on the electrical conductivity (EC) 14 days after transplantation reduced the subsequent EC variability. No differences in head FW were observed between the treatments. A 25% reduction in N fertilizer was considered possible for half of the plots. The quantity of inorganic N extracted by potassium chloride from the crop soil after cultivation was unaffected by the amount of N fertilizer. Therefore, the diagnostic method proposed herein is suitable for soil N management.
Read full abstract