Within communities, pathogens and parasites have the potential to indirectly influence predator-prey interactions. For instance, prey that exhibit pathology or altered traits (e.g. behavioral shifts) following infection could be more prone to predation, which is known as parasite-induced vulnerability to predation (PIVP). PIVP has been frequently documented for pathogens with trophic transmission, because predators are often critical in the pathogen's life cycle. However, for pathogens without trophic transmission, PIVP can lead to a healthy herds effect, thereby reducing transmission in the system. In this study, we explored whether the pathogen ranavirus (family Iridoviridae) enhances vulnerability of 4 species of larval amphibians (spring peepers Pseudacris crucifer, gray treefrogs Hyla versicolor, American toads Anaxyrus americanus, and northern leopard frogs Lithobates pipiens) to 2 common tadpole predators (larval green darners Anax junius [hereinafter Anax] and adult water bugs Belostoma flumineum [hereinafter Belostoma]). For each anuran species, we conducted short-term microcosm experiments to assess predation rates on individuals that were or were not exposed to virus. For 3 of the 4 species, we found that exposure to ranavirus decreased survival rates with Anax between 2- and 9-fold. However, we did not see the same trend with Belostoma, which indicates that predator identity is important in this interaction. More specifically, the higher efficiency of Anax in capturing and consuming prey, relative to Belostoma, may allow Anax to capitalize on trait changes induced by virus exposure and enhance the PIVP effect. Our results indicate that trait-mediated indirect effects could play a role in creating healthy herds in amphibian communities.