Optical methods for single-molecule analysis hold the promise of accurate, sensitive, and rapid detection of target molecules. Here, we demonstrate the efficiency of such an approach for the competitive detection of small molecules in water. Our biosensing method is based on a combination of a single-DNA biochip for the parallelization of tethered particle motion real-time measurements with antibodies and modified targets as molecular competitors. The antibodies are coupled to the particles tethered to the surface by a long DNA bearing in its middle the molecular competitor bound to the antibodies. Competitive target binding leads to a detectable conformational change of the DNA tethers from looped to unlooped in proportions related to the target concentration. We thus managed to detect fluorescein, chosen as a model of a target molecule, in freshwater of various qualities, from solutions prepared with ultrapure water to more complex matrices such as river water and wastewater treatment plant effluent samples. Similar dose-response curves were obtained under these various conditions in a wide range of concentrations from nanomolar to micromolar with a limit of detection around 2 nM.
Read full abstract